Phenomenology 0 000000 Conclusions and Outlook

Flavour Physics in the Aligned Two-Higgs-Doublet Model

Martin Jung

in collaboration with Toni Pich and Paula Tuzón

Instituto de Física Corpuscular - IFIC, CSIC-UVEG, Valencia

Talk at Scalars 2011, Warsaw 27th of August 2011

Phenomenology D DOOOOO Conclusions and Outlook

Outline

Introduction

Tensions The Aligned Two-Higgs-Doublet Model

Phenomenology

(Semi-)Leptonic Decays Loop-induced processes

Conclusions and Outlook

Phenomenology 0 000000

Tensions

Present tensions in the global CKM fit:

- $\sin 2\beta_{B\to\tau\nu}$ vs. $\sin 2\beta|_{B\to J/\psi K^{(*)}}$
- (\(\epsilon_K\), depending on inputs and statistical treatment)

Tensions in the neutral B systems:

- Phase in $B_s \rightarrow J/\psi\phi$ (however: $2.x\sigma \rightarrow \sim 1\sigma$ recently)
- Like-sign dimuon charge asymmetry

Not discussed here:

- $|V_{ub}|$ exclusive vs. inclusive
- Pattern of $B \rightarrow \pi K \ CP$ asymmetries
- Neutrino physics
- Astrophysical constraints

• . . .

Why 2HDM?

Model-independent analysis: Too many parameters in general

Electroweak symmetry breaking mechanism unknown yet:

- 1HDM minimal and elegant, but unlikely (SUSY,GUTs,...)
- 2HDM "next-to-minimal":
 - *ρ*-parameter "implies" doublets
 - low-energy limit of more complete NP models
 Model-independent element
 - simple structure, but interesting phenomenology
 - affects the aforementioned tensions (with new CPV present)

Lots of 2HDMs...

General 2HDM:

 $-\mathcal{L}_Y^q \;=\; \bar{Q}_L'(\Gamma_1\phi_1+\Gamma_2\phi_2)\,d_R'+\bar{Q}_L'(\Delta_1\widetilde{\phi}_1+\Delta_2\widetilde{\phi}_2)\,u_R'\,+\,\mathrm{h.c.}$

 Γ_i, Δ_i : Independent 3×3 coupling matrices

Flavour problem: generic couplings imply huge NP scale

Most common solution: Applying a discrete \mathcal{Z}_2 symmetry:

- Eliminates two couplings, hence tree-level FCNCs
- Different charge assignments lead to "Type I,II,X,Y"
- Only one new parameter in the flavour sector: $\tan\beta$
- Type II SUSY-motivated: Bulk of analyses (Recently: El Kaffas et al. '07, GFitter '08, CKMfitter '09, UTfit '09)
- However: no new source of CP violation

Beyond Z_2

Models/frameworks without \mathcal{Z}_2 symmetry:

- Type III: $Y'_{ij} \sim \sqrt{rac{m_i m_j}{v^2}}$, e.g. Mahmoudi/Stål '09
- 2HDM with MFV (D'Ambrosio et al. '02):
 - EFT framework, unknown couplings
 - Yukawa matrices remain only source of flavour and *CP* violation
 - Spurion formalism with flavour-blind phases: can be used to arrive at the A2HDM (1st term in series)
 - Recently: Expansion around Type II (as '02 as well) with phases and decoupling (Buras et al. '10). See also Paradisi/Straub, Kagan et al., Botella et al., Feldmann/MJ/Mannel, Colangelo et al., all '09.
- BGL models (Branco et al. '96), Ferreira/Silva '10, ...

The Aligned two-Higgs-doublet model

Alignment condition:
$$\Gamma_2 = \xi_d \ e^{-i\theta} \ \Gamma_1 \ , \ \Delta_2 = \xi_u^* \ e^{i\theta} \Delta_1$$

leads to

[Pich/Tuzón '09]

$$-\mathcal{L}_{Y,H^{\pm}}^{q} = \frac{\sqrt{2}}{v} H^{+}(x) \bar{u}(x) \left[\varsigma_{d} V M_{d} \mathcal{P}_{R} - \varsigma_{u} M_{u}^{\dagger} V \mathcal{P}_{L} \right] d(x) + \text{h.c.}$$

with complex, observable parameters $\varsigma_{u,d,l}$, implying:

- No FCNCs at tree-level
- New sources for CP violation
- Only three complex new parameters (unlike Type III)
- \mathcal{Z}_2 models recovered for special values of $\varsigma'_i s$
- Radiative corrections symmetry-protected, of MFV-type (Cvetic et al. '98, Braeuninger et al. '10, MJ/Pich/Tuzón '10)
- Recently: Proposals towards UV-completion (Medeiros Varzielas '11, Serôdio '11)

Combination of (semi-)leptonic constraints

Joining these constraints with semi-leptonic decays:

- Only combinations $\delta_{u/dl} = \varsigma_{u,d}\varsigma_l^*/M_{H^{\pm}}^2$ constrained
- Resulting "bananas" exclude the second real solution (with δ_{dl} help needed)
- $\delta_{dl} \lesssim 0.1$, δ_{ul} constraint weaker (but see later)
- Projection on Type II: δ_{dl} translates to tan $\beta \lesssim 0.1 \frac{M_{H^{\pm}}}{GeV}$

Conclusions and Outlook

Loop-induced processes

High sensitivity for NP in general:

- SM-process suppressed by loop and CKM-factors
- Internal heavy particles can contribute
- Large Higgs-couplings
- Sensitivity to UV-completion as well

Here only examples, for full analyses see [JM/Pich/Tuzón '10,'11,'11 (in prep.)]

 $b
ightarrow s \gamma$

Famous example for this NP-sensitivity:

- Inclusive process, theoretically well under control (but affected by non-local effects, see Benzke et al. '10)
- BR @ ~NNLO (NLO) in the SM (2HDM)(community effort)
- Experimental accuracy \sim 7%, thanks to B-factories
- Type II: $\varsigma_u \varsigma_d^* = -1$: mainly limit on M_H
- A2HDM: $\zeta_{u,d}$ independent \rightarrow more freedom

Correlations are extremely important:

Projections

Models with \mathcal{Z}_2 symmetry are limits of the A2HDM:

- Additional correlations
- All models: $aneta\gtrsim 1$
- Type II/Y: $M_{H^{\pm}}\gtrsim 277~{
 m GeV}$
- Type II: Upper limit on $\tan\beta$

Туре	Sd	ς_{u}	SI
I	$\cot eta$	$\cot \beta$	$\cot eta$
П	- aneta	$\cot \beta$	$-\taneta$
Х	$\cot eta$	$\cot eta$	- aneta
Y	- aneta	$\cot\beta$	$\cot \beta$

Electric dipole moments

- Highly sensitive to new CPV sources (SM tiny)
- In the A2HDM:
 - One-loop (C)EDMs: not tiny, but under control
 - 4-fermion operators: small, no $\tan\beta^3$ -enhancement
 - Two-loop graphs dominant (Weinberg '89, Dicus '90, Barr/Zee '90, Gunion/Wyler '90)

Again sensitivity to UV-completion

- Largest charged Higgs contribution from Weinberg diagram
- Barr-Zee(-like) diagrams dominate neutral Higgs exchange
- For neutrals: sum includes cancellations in general

Charged Higgs in the neutron EDM

- Two-step matching $_{(Boyd \ et \ al. \ '90)}$: *b*-CEDM at $\mu_{EW}
 ightarrow \mathcal{O}_W$ at μ_b
- QCD sum rule estimate for matrix element

$$d_n \sim d_n^{exp} rac{500 \,\, {
m GeV}}{M_{H^\pm}} \, {\it Im}[\zeta_d \zeta_u^*]$$

Charged Higgs in the neutron EDM

- Two-step matching $_{(Boyd \ et \ al. \ '90)}$: *b*-CEDM at $\mu_{EW}
 ightarrow \mathcal{O}_W$ at μ_b
- QCD sum rule estimate for matrix element

$$d_n \sim d_n^{exp} rac{500 {
m ~GeV}}{M_{H^\pm}} \, Im[\zeta_d \zeta_u^*]$$

Constraint from neutron EDM on charged Higgs contribution:

Charged Higgs in the neutron EDM

- Two-step matching $_{(Boyd \ et \ al. \ '90)}$: b-CEDM at $\mu_{EW} o \mathcal{O}_W$ at μ_b
- QCD sum rule estimate for matrix element

$$d_n \sim d_n^{exp} rac{500 {
m ~GeV}}{M_{H^\pm}} \, Im[\zeta_d \zeta_u^*]$$

Combination of $BR(b \rightarrow s\gamma)$ and neutron EDM:

orange: $M_{H^{\pm}} = 500 \text{ GeV}$ brown: $M_{H^{\pm}} = 80 \text{ GeV}$

▶ $Im(\zeta_d \zeta_u^*)$ strongly constrained, but not tiny

Neutral Higgs in EDMs

- Effect dominated by Barr-Zee(-like) diagrams
- Non-trivial constraints for all combinations apart from $Im(y_u^2)$
- Here: only results for Thallium, one neutral Higgs
- igstarrow Paramagnetic atom, EDM dominated by d_e : $d_{
 m Tl}pprox -585\,d_e$

Again O(1) imaginary parts remain allowed
The A2HDM passes the EDM-test ✓

Conclusions and outlook

Conclusions:

- 2HDMs active field, new developments
- Type II: best constrained, but no effect on present tensions
- A2HDM:
 - New CPV possible with sufficient FCNC suppression(!)
 - Rich phenomenology, only three new flavour-parameters
 - Strong (but not "killing") constraints from EDMs

Outlook:

- A2HDM: Additional analyses in progress:
 - neutral Higgs effects
 - combined electroweak and radiative decays
 - EDMs continued
- Interesting times! Measurements to come from LHC, SuperB/BelleII, BES-III, NA-62,...
- Shortly we might see limits changing to determinations

Phenomenology 0 000000 Conclusions and Outlook

Public protests about to change the picture?

Phenomenology 0 000000 Conclusions and Outlook

Backupslides

- Radiative corrections in the A2HDM
- Neutron EDM in the A2HDM
- Experimental data used
- Hadronic inputs

Radiative corrections in the A2HDM

Symmetry structure forces the (one-loop) corrections to be of the form $[MJ/Pich/Tuz\acute{o}n~'10,$ Cvetic et al. '98]

$$\begin{aligned} \mathcal{L}_{\text{FCNC}} &= \frac{C(\mu)}{4\pi^2 v^3} \left(1 + \varsigma_u^* \varsigma_d \right) \times \\ &\times \sum_i \varphi_i^0(x) \left\{ \left(\mathcal{R}_{i2} + i \, \mathcal{R}_{i3} \right) \left(\varsigma_d - \varsigma_u \right) \left[\bar{d}_L \, V^\dagger \, M_u \, M_u^\dagger \, V M_d \, d_R \right] - \\ &- \left(\mathcal{R}_{i2} - i \, \mathcal{R}_{i3} \right) \left(\varsigma_d^* - \varsigma_u^* \right) \left[\bar{u}_L \, V M_d \, M_d^\dagger \, V^\dagger \, M_u \, u_R \right] \right\} + \text{h.c.} \end{aligned}$$

- Vanish for \mathcal{Z}_2 symmetry
- FCNCs still strongly suppressed
- See also Braeuninger et al. '10, Ferreira et al. '10

Observables

Observable	Value
$ \mathcal{B}_{RR} _{\tau \to \mu}$	< 0.72 (95% CL)
${ m Br}(au o \mu u_{ au} ar{ u}_{\mu})$	$(17.36 \pm 0.05) \times 10^{-2}$
${ m Br}(au o e u_{ au} \overline{ u}_e)$	$(17.85\pm0.05) imes10^{-2}$
${ m Br}(au o \mu u_ au ar u_\mu)/{ m Br}(au o {f e} u_ au ar u_{f e})$	0.9796 ± 0.0039
${ m Br}(B o au u)$	$(1.73\pm0.35) imes10^{-4}$
$Br(D \to \mu \nu)$	$(3.82\pm0.33) imes10^{-4}$
$Br(D \to \tau \nu)$	$\leq 1.3 imes 10^{-3}$ (95% CL)
${ m Br}(D_s o au u)$	$(5.58\pm0.35) imes10^{-2}$
${\rm Br}(D_s \to \mu \nu)$	$(5.80\pm0.43) imes10^{-3}$
$\Gamma(K o \mu u) / \Gamma(\pi o \mu u)$	1.334 ± 0.004
$\Gamma(au o K u)/\Gamma(au o \pi u)$	$(6.50\pm0.10) imes10^{-2}$
log C	0.194 ± 0.011
${ m Br}(B o D au u)/BR(B o D\ell u)$	0.392 ± 0.079
$\Gamma(Z ightarrow b ar{b})/\Gamma(Z ightarrow$ hadrons)	0.21629 ± 0.00066
${ m Br}(ar{B} ightarrow X_s \gamma)_{E_\gamma > 1.6 { m GeV}}$	$(3.55\pm0.26) imes10^{-4}$
${ m Br}(\bar{B} ightarrow X_c e \bar{ u}_e)$	$(10.74 \pm 0.16) imes 10^{-2}$
$\Delta m_{B_{\mu}^{0}}$	$(0.507 \pm 0.005) \ { m ps}^{-1}$
$\Delta m_{B^0}^{a}$	$(17.77 \pm 0.12) \ { m ps}^{-1}$
$ \epsilon_K ^{-s}$	$(2.228\pm0.011) imes10^{-3}$

Phenomenology 0 000000 Conclusions and Outlook

Hadronic Inputs I

Parameter	Value	Comment
f _{Bs}	$(0.242\pm 0.003\pm 0.022)~{ m GeV}$	Our average
f_{B_s}/f_{B_d}	$1.232 \pm 0.016 \pm 0.033$	Our average
f _{Ds}	$(0.2417 \pm 0.0012 \pm 0.0053)~{ m GeV}$	Our average
f_{D_s}/f_{D_d}	$1.171 \pm 0.005 \pm 0.02$	Our average
f_K/f_π	$1.192 \pm 0.002 \pm 0.013$	Our average
$f_{B_s} \sqrt{\hat{B}_{B_s^0}}$	$(0.266 \pm 0.007 \pm 0.032)~{ m GeV}$	
$f_{B_d} \sqrt{\hat{B}_{B_s^0}} / (f_{B_s} \sqrt{\hat{B}_{B_s^0}})$	$1.258 \pm 0.025 \pm 0.043$	
Â _K	$0.732 \pm 0.006 \pm 0.043$	
V _{ud}	0.97425 ± 0.00022	
λ	0.2255 ± 0.0010	$(1 - V_{ud} ^2)^{1/2}$
$ V_{ub} $	$(3.8 \pm 0.1 \pm 0.4) \cdot 10^{-3}$	$b \rightarrow u l \nu$ (excl. + incl.)
A	$0.80 \pm 0.01 \pm 0.01$	$b \rightarrow c l \nu$ (excl. + incl.)
$\bar{\rho}$	$0.15 \pm 0.02 \pm 0.05$	Our fit
	$0.38 \pm 0.01 \pm 0.06$	Our fit

Table: Input values for the hadronic parameters. The first error denotes statistical uncertainty, the second systematic/theoretical.

Phenomenology 0 000000 Conclusions and Outlook

Hadronic Inputs II

Parameter	Value	Comment
$\bar{m}_u(2 \text{ GeV})$	(0.00255 + 0.00075 - 0.00105) GeV	
$\bar{m}_d(2 \text{ GeV})$	$(0.00504 \stackrel{+ 0.00096}{- 0.00154})$ GeV	
$\bar{m}_s(2 \text{ GeV})$	$(0.105 \stackrel{+}{-} \stackrel{0.025}{-} 0.035)$ GeV	
$\bar{m}_c(2 \text{ GeV})$	$(1.27 {}^{+ 0.07}_{- 0.11}) { m GeV}$	
$\bar{m}_b(m_b)$	$(4.20 \stackrel{+0.17}{-0.07})$ GeV	
$\bar{m}_t(m_t)$	$(165.1 \pm 0.6 \pm 2.1)~{ m GeV}$	
$\delta_{em}^{K\ell 2/\pi\ell 2}$	-0.0070 ± 0.0018	
$\delta_{\rm em}^{\tau K2/K\ell2}$	0.0090 ± 0.0022	
$\delta_{em}^{\tau \pi 2/\pi \ell 2}$	0.0016 ± 0.0014	
$\rho^2 _{B\to Dl\nu}$	$1.18 \pm 0.04 \pm 0.04$	
$\Delta _{B \to DI\nu}$	0.46 ± 0.02	
$f_{+}^{K\pi}(0)$	0.965 ± 0.010	
Ē ^L ,SM	$-0.42112 {}^{+0.00035}_{-0.00018}$	
κ_{ϵ}	0.94 ± 0.02	
$\bar{g}_{b,SM}^R$	$0.07744 \substack{+\ 0.00006 \\ -\ 0.00008}$	

Table: Input values for the hadronic parameters. The first error denotes statistical uncertainty, the second systematic/theoretical.

CKM-fit within the A2HDM

In the A2HDM, the CKM-parameters are determined as follows:

- Only the constraints from $|V_{ub}/V_{cb}|$ and $\Delta m_s/\Delta m_d$ survive.
- γ from tree-level decays not competitive yet, but excludes 2nd solution.

•
$$\Delta m_s / \Delta m_d = \Delta m_s / \Delta m_d |_{SM} + \mathcal{O}\left(\frac{m_s - m_d}{M_W}\varsigma_d\right)$$

Statistical Treatment

In this work, the RFit-scheme is used: [Höcker et al., 2001]

- Philosophy: distance from central value has no statistical meaning for theory errors / large systematics
- This implies that the statistical problem is not well-defined
- Assumption: Within a range no contribution to χ², outside increase corresponding to statistical error
 Choose range conservatively
 Theory errors add linearly

Averaging different theory-results even less well-defined...
Theory error at least that of best single result
Statistical errors treated "normally"
Here additionally: Criteria from FLAG (where available)

Phenomenology 0 000000

$b \rightarrow s \gamma$: Results

However: Correlations are extremely important:

- Constraint much stronger for small Higgs masses
- For $\phi \sim \pi$ constructive, $\phi \sim 0$ destructive interference
- Implies small effect to LCDA from charged Higgs (neutral sector effects might be large: see Buras et al. '10)

Direct CP-asymmetry in $b \rightarrow s\gamma$

- Small in the SM (Ali et al.'98, Kagan/Neubert '98, Hurth et al.'05). See however again Benzke et al. '11.
- Potentially large in 2HDMs with new CPV (Borzumati/Greub '98)
- However, $BR(b
 ightarrow s\gamma)$ constrains the asymmetry strongly:

Compatible with measurement, but enhancement possible
 More precise measurement interesting (→ SuperB)

Constraints from mixing

Mixing in the SM induced by box-graphs:

Figure taken from Fleischer, R: Phys. Rept.370,537-680,2002.

- *B*-system: internal top-quark dominant for $\Delta m_{d,s}$
- K-system: charm-loop dominant in Δm_K , but top in ϵ_K
- Short-distance calculations possible

Large Higgs-effects expected in top loops: $m_t/M_H \sim 1$ possible Fifects in $\Delta m_{d,s}, \phi_{d,s}, \epsilon_K$

However: main effect real, $\sim |\varsigma_u|^2$, CPV suppressed as $\left(\varsigma_d \varsigma_u^* \frac{m_b m_t}{M_{*}^2}\right)^2$

Phenomenology 0 000000

Kaon mixing

- Two SM amplitudes relevant \rightarrow no NP phase needed
- Recent updates: improved non-perturbative corrections [Buras et al. '08,'10] and NNLO in η_{ct} [Brod/Gorbahn '10]
- In \mathcal{Z}_2 -models $\sim an^{-2} eta$
- In the A2HDM: constraint on general parameter $|\varsigma_u|$
- At 68% preference for non-vanishing NP-contribution
 automatically right direction for mini-tension

Mixing in the B system

- In the SM completely dominated by the top-loop
- Complex NP-contributions necessary to change the mixing-phase
 - Below only charged Higgs discussed, but neutral Higgs effects can be sizable [Buras et al. '10]

A2HDM: large (sizable) effect in $\Delta m_{d,s}$ ($\phi_{d,s}$) possible:

- $\mathcal{O}(1)$ effect to SM-contribution w/o phase $ightarrow \Delta_{d,s}$
- Up to 10 40% effect for \mathcal{O}_{SLL} with weak phase $\rightarrow \phi_{d,s}$
- Both contributions universal for q = d, s : Δ_d ≃ Δ_s
 Δm_s/Δm_d still usable in UT fit

The Like-sign dimuon charge asymmetry

Difference of $\mu^+\mu^+$ and $\mu^-\mu^-$ pairs from a $B - \bar{B}$ -system Measure for *CP*-violation in mixing

- For B_d measured at the B-factories
- At D0: Measurement for sum B_d, B_s
 ▶effect in B_s-mixing
- Characteristic measure: $\frac{a_{s}^{s}|_{\text{full}}}{a_{s}^{s}|_{\text{SM}}} = \frac{\sin \phi_{s}^{\text{full}}}{\Delta_{s} \sin \phi_{s}^{\text{SM}}}$
- Central value unphysical $(a_{sl}^{s}|_{full} \sim 400a_{sl}^{s}|_{SM})$, but error still large
- Correlations from $b \rightarrow s\gamma$ important!
- Effect of H^{\pm} too small
- Neutrals contribute

